If it's not what You are looking for type in the equation solver your own equation and let us solve it.
291=x^2
We move all terms to the left:
291-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+291=0
a = -1; b = 0; c = +291;
Δ = b2-4ac
Δ = 02-4·(-1)·291
Δ = 1164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1164}=\sqrt{4*291}=\sqrt{4}*\sqrt{291}=2\sqrt{291}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{291}}{2*-1}=\frac{0-2\sqrt{291}}{-2} =-\frac{2\sqrt{291}}{-2} =-\frac{\sqrt{291}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{291}}{2*-1}=\frac{0+2\sqrt{291}}{-2} =\frac{2\sqrt{291}}{-2} =\frac{\sqrt{291}}{-1} $
| 45x×5=150 | | 13x-4x=42-5x | | 45x+5=150 | | x^2=144+81 | | 2x−2=2−2x | | 8=(4x-3) | | X/3+4=x/2+7/2 | | Y=-4x^2+9 | | 29=(-)8t-3 | | 4X+5y=50/2 | | x^+5=17 | | 21p+25=27 | | 6/y=9-24 | | x^=41=0 | | -3(5t-5)+9t=7t-9 | | 8x-37=2x-5 | | 4x-42-6x=88 | | 7u=–18−11u | | 18x+3=10x+35 | | ((6x+1)x2)+((4x-11)x2)=180 | | d*24=-12 | | (-12)*c=12 | | x+0.06x=178 | | x+14^2=60^2 | | b*(-3)=-12 | | 77+-5x=45 | | (2x+2)+(x+5)=180 | | 0.12n+0.06(1650-n)=0.08(1650) | | 77+-5x=78 | | 3*(-4)=a | | x-0.2x=584 | | 9g-10=-28 |